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Identifying and Validating Alternative
Splicing Events

GeneChip® Exon Arrays are powerful 
tools for the discovery and study of mRNA
transcript diversity. For the first time,
researchers will obtain approximately 1.4
million data points from each sample in a
single experiment. This increased data
density also poses a number of data
analysis challenges, including manage-
ment of a higher number of potential false
positives from the much larger data set. 

In addition, exon arrays provide a new
dimension of genomic information
beyond classical gene expression results
from microarrays—alternative splicing. For
the analysis of alternative splicing, new
algorithms will need to be developed and
tested in various data sets. This is an active
area of research and we anticipate that
new developments and methods will con-
tinue to emerge with the increasing avail-
ability of sample data sets on exon arrays.

In this Technical Note, we present practi-
cal recommendations for managing some
of these challenges based on our experi-
ence at Affymetrix. A sample workflow
operating mainly within Affymetrix®

Expression Console™ Software and other
GeneChip®-compatible™ software pro-
grams for exon array analysis is described
in detail. Our experience shows that sys-
tematic filtering of the raw array results, 
as detailed here, is critical to the improve-
ment of validation rate in the subsequent
RT-PCR validation experiments. Most of
the analysis strategies discussed in this
Technical Note will be applicable to any
statistical method developed for identify-
ing alternative splicing events.
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GeneChip® Exon Arrays

An introduction to managing data provided by GeneChip® Exon Arrays

INTRODUCTION

Alternative splicing is a major source of
protein diversity for higher eukaryotic
organisms, and is frequently regulated in a
developmental stage-specific or tissue-spe-
cific manner. Current estimates suggest
that 50 to 75 percent (or more) of human
genes have multiple isoforms. 

Splice variants from the same gene can pro-
duce proteins with distinct properties and dif-
ferent (even antagonistic) functions. In addi-
tion, a number of genetic mutations involved
in human disease have been mapped to
changes in splicing signals or sequences that
regulate splicing. Thus, an understanding of
changes in splicing patterns is critical to a
comprehensive understanding of biological

regulation and disease mechanisms.
This Technical Note provides detailed

guidelines for those using exon arrays for
alternative splicing analysis, to help
researchers generate meaningful interpreta-
tion of exon array data more quickly. These
guidelines include the following:

n An introduction to alternative splicing
prediction algorithms when comparing
changes that have occurred between two
groups of samples

n Description of an analysis workflow
n Practical considerations in filtering data 
n Experimental verification of alternative 

splicing events
A list of technical support materials is

included for convenient reference. It is highly
recommended that users review these reference
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Figure 1: Different types of alternative splicing events.



documents to become familiar with the array
design and basic algorithms associated with
exon arrays prior to use of this Technical Note
to walk through the actual analysis workflow.
For detailed information about using this
workflow to generate biologically significant
results comparing colon cancer and normal
samples, see Gardina, et al.

BACKGROUND

EXON ARRAY DESIGN

GeneChip® Exon 1.0 ST Arrays are an
incredibly powerful tool for the study of
alternative splicing. The ability to treat indi-
vidual exons (or parts of exons) as independ-
ent objects makes it possible to observe dif-
ferential skipping or inclusion of exons. This
is not possible (or at least, certainly not opti-
mal) on more classical expression array
designs that focus on transcription activities
at the 3’ end of a gene. 

The exon array was designed to be as inclu-
sive as possible at the exon level, drawn from
annotations ranging from empirically deter-
mined, highly curated mRNA sequences to
ab-initio computational predictions (for more
information, see Technical Note, “GeneChip®

Exon Array Design”), enabling the discovery of
new alternative splicing events. This is an
advantage over exon-exon junction arrays,
which are typically designed against only
observed or annotated junctions.

The GeneChip Human Exon 1.0 ST
Array contains approximately 5.4 million
probes (“features”) grouped into 1.4 mil-
lion probe sets, interrogating over 1 mil-
lion exon clusters, which are exon annota-
tions from various sources that overlap by
genomic location. A Probe Selection
Region (PSR) represents a region of the
genome that is predicted to act as an inte-
gral, coherent unit of transcriptional
behavior. A PSR is the target sequence
from which probes are designed. In many
cases, each PSR is an exon; in other cases,
due to potentially overlapping exon struc-
tures (or alternative splice site utilization),
several PSRs may form contiguous, non-
overlapping subsets of a true biological exon. 

The median size of PSRs is 123 bp with a

minimum size of 25 bp. About 90 percent of
the PSRs are represented by four Perfect Match
(PM) probes (a “probe set”). Such redundancy
allows robust statistical algorithms to be used
in estimating presence of signal, relative
expression and existence of alternative splicing.

The exon arrays do not include a paired
Mismatch probe for each PM probe. Instead,
surrogate background intensities are derived
from approximately 1,000 pooled probes
with the same GC content as each PM probe.
One commonly used set of background
probes is called the “antigenomic” back-
ground probe set, which contains sequences
that are not present in the human genome (or
a few other genomes) and are not expected to
cross-hybridize with human transcripts. 

In addition, exon arrays provide robust
gene-level expression analysis. The median
number of probes for each RefSeq gene is 30
to 40 distributed along the entire length of
the transcript, as compared to probes select-
ed only at the 3’ end in classical gene
expression microarrays. 

PROBE SET ANNOTATIONS AND

TRANSCRIPT CLUSTERS

The plethora of exon architectures (as shown
schematically in Figure 1, e.g., cassette
exons, mutually exclusive exons, alternative
splice sites, alternative transcriptional starts
and stops), the variations in quality of tran-
script annotations and the necessity of rapid-
ly incorporating new genomic knowledge
have led to a dynamic design for reconstitut-
ing exons into genes. 

A set of rules was created for virtual
assembly of the probe sets (exon-level) into
transcript clusters (gene-level) based on the
confidence level of the supporting evidence
and the juxtapositions of the exon borders
(White Paper, “Exon Probe set Annotations
and Transcript Cluster Groupings v1.0”).
The mapping between probe sets and tran-
script clusters is defined by meta-probe set lists
as described below (in order of decreasing
confidence). The number of clusters cited
below reflects the version of mapping files
provided by Affymetrix as of November
2006. Updated mapping files incorporating
the latest information may be downloaded

directly from Affymetrix’ web site. 
n Core: RefSeq transcripts and full-length

mRNAs (17,800 transcript clusters) 
n Extended: Core + cDNA-based annota-

tions (129,000 clusters) 
n Full: Extended + ab-initio gene pre-

dictions (262,000 clusters)   

SIGNAL ESTIMATION ALGORITHMS

Several statistical methods may be used to
combine information from probes belonging
to the same gene, or exon, to generate expres-
sion signal values of the gene or exon. For
example, RMA and PLIER are two of the
most commonly used algorithms. Although
this Technical Note focuses only on the
workflow with PLIER, the basic principles
apply to RMA and other signal estimation
analysis methods, as well.

Relative expression can be determined using
the PLIER algorithm (White Paper, “Guide to
Probe Logarithmic Intensity Error (PLIER)
Estimation”), a robust M-estimator that uses a
multi-chip analysis to fit a model for feature
response and target response for each sample.
The target response is the PLIER estimate of
the signal of a probe set (exon-level). 

Gene-level PLIER estimates are derived by
combining all probe sets predicted to map
into the same transcript cluster (according to
the meta-probe set list). Since PLIER is a
model-based algorithm, exons that are alter-
natively spliced in the samples, therefore
exhibiting different expression patterns com-
pared to the constitutive exons, will have
down-weighted effect in overall gene-level
target response values (White Paper, “Gene
Signal Estimates from Exon Arrays”). 

IterPLIER is a variation that iteratively
discards features (probes) that do not corre-
late well with the overall gene-level signal
and then recalculates the signal estimate to
derive a robust estimation of the gene expres-
sion value primarily based on the expression
levels of the constitutive exons. 

Presence/absence of exons is determined
using “Detection Above Background”
(DABG), as documented in the Detection Call
section of the Technical Note, “Statistical
Algorithms Reference Guide,” using surrogate
background intensities as described above. 
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ALTERNATIVE SPLICING ALGORITHMS

Alternative splicing by definition is differen-
tial exon usage. It is not sufficient, however,
to simply identify exons with differential
expression patterns; we must also account for
differential transcription of the gene itself. 

For example, if a gene is expressed two-fold
higher in sample “A” than in sample “B,”

then all of the constitutively expressed exons
in that gene are also likely to have two-fold
higher signal values. Thus, in order to focus
on the differential inclusion of individual
exons, we need to normalize to the transcrip-
tion rate of the gene, as shown in Figure 2. 

This concept led to the development of the
“Splicing Index” (Srinivasan K., et al.) and

was the motivation for other methods
(MiDAS, Robust PAC, etc.). Different analyt-
ical methods for performing splicing analysis
may deal with this issue in different ways, but
ultimately, the total transcription activity and
splicing change must be included in the
analysis for the method to be successful.

The Splicing Index is a conceptually sim-
ple algorithm that aims to identify exons
(actually, PSRs) that have different inclusion
rates (relative to the gene level) between two
sample groups. The normalized exon intensi-
ty (NI), as described in Figure 3, is the ratio
of the probe set intensity to the gene intensi-
ty as estimated by PLIER (or IterPLIER). 

The Splicing Index Value (SI) is calculated
by taking the log ratio (base 2) of the NI in
Sample 1 and the NI in Sample 2. A hypo-
thetical example of this is shown in Figure 4,
where the inclusion rate of the measured
exon is 10 times lower in Sample 2, despite
the fact that the actual intensity is higher.

An SI of 0 indicates equal inclusion rates of
the exon in both samples, positive values indi-
cate enrichment of that exon in Sample 1, and
negative values indicate repression or exon
skipping in Sample 1 relative to Sample 2.

To identify exons that have statistically
significant changes in inclusion rates
between two groups, a Student’s t-test can be
performed on the gene-level normalized exon
intensities. The absolute value of the
Splicing Index represents the magnitude of
the difference for exon inclusion between the
two samples (or groups of samples). It is
important to consider both the p-value from
the t-test and the magnitude of the change
since the best candidates for validation are
likely to have very small p-values and very
large SIs (either positive or negative). 

MiDAS, which is implemented as a com-
mand-line program of the Affymetrix Power
Tools (APT), is conceptually similar to the
Splicing Index but allows simultaneous com-
parisons between multiple sample groups.
MiDAS employs the gene-level normalized
exon intensities in an ANOVA model to test
the hypothesis that no alternative splicing
occurs for a particular exon. In the case of
only two sample groups, ANOVA reduces to
a t-test. 

Gene-level
Normalized

Intensity
(NI) =

Probe set intensity

Expression level of the “gene”

Figure 3: Gene-level normalized intensity (NI).

Exon Level = Transcription x Splicing

The level of a given exon is a result of the transcription rate of 

the gene and the inclusion rate of the exon.

Figure 2: Exon-level signal consists of the gene-level expression and the inclusion of

that exon as a part of the gene (splicing rate).
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Figure 4: Splicing Index Value (SI).



For a more detailed description of algo-
rithms from Affymetrix, refer to the White
Paper “Alternative Transcript Analysis
Methods for Exon Arrays,” available at
www.affymetrix.com. Various GeneChip®-
compatible™ software products for the exon
application also introduce additional options
and algorithms for alternative splicing analy-
sis. A complete list can be found at
http://www.affymetrix.com/products/soft-
ware/compatible/exon_expression.affx. 

CAVEATS OF MIDAS AND THE SPLICING INDEX

There are several caveats of the currently
implemented, first-generation splicing algo-
rithms that are important to consider when
interpreting exon array results. 

First, the alternative splicing results are
highly dependent on the accurate annotation of
the transcript clusters and precise quantitation
of gene-level estimates. Mis-annotated tran-
script clusters or otherwise incorrect gene-level
predictions may produce less reliable results. 

For example, genes with many alternative-
ly spliced exons (a large percentage relative to
the total number of exons) or instances where
only a sub-set of the gene is expressed (due to
alternative transcriptional starts/stops) are
likely to have some inaccuracy in gene-level
estimates. One possible improvement that
may increase the robustness of gene-level
estimates is to only use probe sets interrogat-
ing constitutive exons. However, this can be
extremely dependent on specific samples and
difficult to predict. The Splicing Index
works best when the gene has a large number
of constitutive exons and a small number of
alternative exons.

Furthermore, these algorithms assume
that the splicing pattern is consistent among
all of the samples within a group. This is
probably not always the case, e.g., tissue-
map experiments that combine multiple tis-
sue types into a single group. Utilizing
groups consisting of multiple tissue types
makes it impossible to discover splicing dif-
ferences between two tissues within the same
group. Large variations of splicing pattern
(and gene expression, to a lesser extent) with-
in a group will reduce the significance of the
t-test, resulting in a larger p-value. One

potential solution for a tissue-map experi-
ment with many different tissue types is
to treat each tissue as a different group
and do many pair-wise comparisons of a
single tissue to all other tissues. MiDAS is
capable of including more than two
groups using ANOVA.

The third limitation is the requirement for
replicates in the statistical t-test (minimum
of three samples per group). While it is actu-
ally possible to run the algorithms with
fewer than three samples per group, the t-
test needs the replicates to estimate the intra-
group variability to calculate meaningful p-
values. In cases where there are insufficient
replicates within a sample group, it may be
possible to create logical groups that might
be expected to have similar splicing patterns.
As with many algorithms, the result is like-
ly to be more robust with increased numbers
of replicates, larger group sizes and increased
consistency within each group.

CONTEXT FOR INTERPRETING ALTERNATIVE

SPLICING DATA

Alternative splicing introduces a new level of
complexity relative to the analysis of gene
expression. Several things are critical to con-
sider for planning, evaluating and interpret-
ing microarray data when screening for
altered splicing events:

1. Alternative splicing is often a subtle
event: there is rarely an all-or-none change in
exon inclusion between one tissue and anoth-
er. A more likely scenario may be a shift from
50 percent inclusion of an exon in one tissue
to 80 percent inclusion in a different tissue.
A small change in the ratio of isoforms may
be biologically significant.

2. Alternative splicing is a very common
phenomenon: ~ 75 percent (or more) of all
genes appear to be alternatively spliced.
Between any two tissue types there may be
thousands of probe sets that vary in their
inclusion into transcripts. The splicing pat-
tern can also be inherited and therefore differ
from individual to individual, resulting in
heterogeneity in the population examined.
This adds an additional factor in interpreting
results or identifying disease-specific alterna-
tive splicing events in the mixed background. 

3. We are typically dealing with a mixed
population of related transcripts from a locus
rather than the singular “gene” that we usu-
ally associate with other expression arrays.
This is a messy concept, but it more closely
reflects real biology. The exon array does not
detect transcripts per se; it detects exons that
can be virtually reassembled according to the
meta-probe sets. It has no information about
which exons are actually physically linked
together in transcripts, but instead treats
genes as a collection of all the exons associat-
ed with that locus. There may, in fact, be a
number of combinations of transcripts that
would account for the observed exon probe
set signals; therefore, known transcripts from
public databases may be a useful guide for
interpreting the results. 

4. Differential gene expression may further
complicate differential alternative splicing
analysis. In order to calculate differential
exon inclusion into gene transcripts, we
always have to account for relative differences
in gene expression between two sample
types. Therefore, predictors of alternative
splicing must accurately estimate both gene-
level signals and exon-level signals. 

The combination of these factors means
that typical considerations in designing a
good microarray study such as sample size
and sample quality become even more criti-
cal. For example, tumors may be a mixture of
different tumor stages and probably also
mixed with normal tissue. Even normal tis-
sue may be composed of various cell types
exhibiting different splicing patterns; for
instance, colonic sections can consist of both
smooth muscle and epithelial tissue. 

Due to the inherent heterogeneity of the
biology, the data needs filtering by multiple
methods at both the exon and gene level to
reduce false positives (described in detail in
the Workflow and Filtering Methods sec-
tions below). Visually inspecting the probe
set intensities in a genomic context is also a
useful way to improve true discovery rate. 

Ultimately, experimental confirmation by
a different technology—RT-PCR, for exam-
ple—will provide confidence in the results
obtained from statistical analysis. However,
experimental validation is laborious, so
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approaches to narrow down the candidate
list computationally may save much effort in
the lab. It should also be noted that in some
cases filtering the data in an attempt to
reduce false positives may involve a trade-off
with the loss of true positives. The suggest-
ed filtering methods are intended to highly
enrich the results with true positives, there-
by maximizing the likelihood of positive
validation. Depending on the specific aims
of an individual experiment, a different
approach may be more appropriate.

In addition, some users may be interested in
using exon arrays to detect unique individuals
or samples within the experimental group
that exhibit different splicing patterns com-
pared to the rest of the samples. This analysis
can be used effectively to detect individual-to-
individual splicing variation or exon-skipping
mutations, frequently observed in cancer sam-
ples. For this type of analysis, the methods
described here are certainly relevant but the
details will need to be modified to meet the
specific research objectives.

WORKFLOW

This workflow (as schematically shown in
Figure 5) begins with CEL files and concludes
with empirical validation of the results. Some
introductory concepts are described here:

n Some of the workflow occurs outside of
Expression Console with external applica-
tions for scripting/filtering (Perl) and
statistics (like Partek and other GeneChip®-
compatible™ software packages).
n There are actually two parallel analyses
(gene-level and exon-level) carried out in
Expression Console that ultimately con-
verge at MiDAS (or other alternative algo-
rithms) for alternative splicing prediction. 
n The assumption for this entire approach
is that there are two or more sample
groups, and we intend to find differential
alternative splicing between the groups.
Alternative splicing can occur within one
tissue, but in this scenario, we are only
concerned with the way it varies in differ-
ent tissues or conditions. 
n There are two points at which meta-
probe set options are invoked:

1. In signal estimation, the meta-probe
set defines the exons to be used to cal-
culate gene-level signal (PLIER,
IterPLIER, RMA, etc.), and therefore
defines the set of genes to include in
the analysis.
2. In MiDAS, the meta-probe set
defines the exons that are mapped to
the input genes.

The result is that you could, for instance,
specify only Core (highly confident) genes,
but use MiDAS to predict alternative splic-
ing for the Full (speculative) set of exons
associated with those Core genes. 

n Command-line formats are provided
(gray box in next column) for those using
UNIX-based systems. The analogous
input options for the Windows GUI ver-
sion of Expression Console are explained in
detail in the user’s manual.

PHASE I: SIGNAL ESTIMATION

Listed below is a suggested example to con-
duct exon array analysis. Although there are
other possible ways to perform these same
functions, we describe one of them here as a
starting point for new users.

A) Gene level
n Use Expression Console 
n IterPLIER (PM-GCBG)
n Antigenomic.bgp as the GC back-
ground pool. Antigenomic sequences
are not found in the human genome or
several other genomes.
n Sketch normalization at 50,000
data points
n Meta-probe set = Core (this is the
most conservative set of genes with the
highest confidence)
n Set of CEL files 

Do not use DABG for gene-level estima-
tion of “Present/Absent.” Detection calls for
genes will be estimated separately with
another method (as described below during
the filtering steps).

For those using the command-line APT
programs on UNIX:
probe set-summarize    -a  quant-
norm.sketch=50000.bioc=false,pm-
gcbg,iter-plier    -p  HuEx-1_0-st-
v2.pgf    -c  HuEx-1_0-st-v2.clf    -b
antigenomic.bgp   -s  meta-probe
set.core.txt      MyCelDirectory/*.CEL

Gene
expression

analysis

CEL

Meta-
probe set IterPLIER PLIER DABG

Exon
p-values

Remove outlier samples

Gene signal Exon signal

Filter gene
signals

Filter exon
signals

Meta-
probe set

MiDAS

AS predictions

Fold change and p-value

Visualization

Validation

Figure 5: Workflow for gene expression and alternative splicing analysis with exon arrays.

Tan boxes represent files or data sets and green boxes represent processes or programs.

Functions within the gray boxes occur within Expression Console, or Affymetrix APT. Solid

arrows are the main data flow and dashed lines are accessory flows.



B) Exon level
n Use Expression Console
n PLIER (PM-GCBG). Most probe
sets only have four probes, which is too
limited to be useful with IterPLIER at
the individual exon level.
n Antigenomic.bgp
n Sketch normalization at 50,000
data points
n DABG (PM-only)-produces p-val-
ues for detection above background
n It is possible to limit the analysis to
a subset of exons by providing a list
file. However, in general, it may be
best to begin with an inclusive set like
probe set-list.main.txt to minimize any
bias in analysis.
n Set of CEL files 

PHASE II: REMOVING OUTLIERS

Outlier samples should be identified and
eliminated, or at a minimum, accounted for.
This is particularly true in analysis of exon
array data since low sample quality is likely
to be highly influential in generating noise,
therefore leading to high false positive rates. 

A typical approach is the Principle
Component Analysis (PCA) for identifica-
tion of possible outliers, followed by
ANOVA to test their effect (using a standard
statistical package, such as Partek’s
Genomics Suite). Examples are shown in
Figure 6. Samples found as extreme outliers
should be removed from the analysis.

PHASE III: FILTERING SIGNAL DATA

In order to obtain meaningful splicing
information and to decrease the chances of
false positives (thereby increasing the veri-
fication rate), a number of filtering steps
can be performed. 

Within the analysis described in this
Technical Note, validation of splicing events in

A F F Y M E T R I X ® P R O D U C T  FA M I LY  > ARRAYS

G E N E  E X P R E S S I O N  M O N I T O R I N G

A F F Y M E T R I X ® P R O D U C T  FA M I LY  > ARRAYS

nn
nn 6

For those using the command-line APT
programs on UNIX:
probe set-summarize   -a  plier-gcbg-
sketch   -p  HuEx-1_0-st-v2.pgf    -c
HuEx-1_0-st-v2.clf    -b
antigenomic.bgp   -s   probe set-
list.main.txt     -a   pm-only,dabg   -x 2
MyCelDirectory/*.CEL
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Figure 6: Principle Component Analysis (PCA) to identify outlier samples. The examples

shown here are the colon and normal paired samples run on exon arrays. The CEL files are

available at www.affymetrix.com. Exon-level signals from each sample are mapped by PCA,

and paired tumor-normal samples are joined by lines. The circled sample data (back left)

appears to be an outlier in two dimensions (1 and 3) of the PCA mapping. However, it is

Patient #3 (black arrows) that behaves contrary to the majority of the samples; while most

of the tumor samples tend to have a higher value on the chief PCA component (i.e., right-

ward on the X-axis) than the normal tissue, Patient #3 tends to the opposite direction. The

aberrant behavior of Patient #3 is confirmed by ANOVA (shown in Figure 7 below). This also

illustrates one of the advantages of having paired samples.
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Figure 7: ANOVA analysis of signal and noise. Exclusion of the sample pair from Patient #3

(“Del_3”) in ANOVA analysis greatly improves the signal-to-noise ratio for discrimination by

tissue type (normal vs. tumor). Therefore, Patient #3 was removed from the remainder of

the analysis described below. No other sample pair had this magnitude of effect. Be aware,

however, that removing outliers reduces sample size; therefore removal of outlier samples

should be done cautiously. Furthermore, noise ratios (normalized against error) from

ANOVA also showed that the gender, patient and tumor-stage categories were relevant (F

Ratio > 1), and thus should be included as factors in later analysis. 
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the laboratory (e.g., by RT-PCR) is by far
the most laborious step. Therefore, addition-
al effort made during computational analysis
to reduce false positive rate will ultimately
decrease time spent in the lab. In this sec-
tion, we present some suggestions for mini-
mizing the impact of artifactual signals. In
addition, several more stringent optional fil-
tering steps are possible that may further
lessen false positives and make it easier to
find “low-hanging fruit” for validation.
Figure 8 illustrates several examples of pos-
sible scenarios that may lead to misidentifi-
cation of alternative splicing events. 

Several filtering methods applied to signal
data are suggested here and are described in
detail in the Filtering Methods section. Some
of these methods have been implemented in
third-party software, but otherwise can be per-
formed using simple scripts, e.g., in Perl. 

PRIMARY (MANDATORY) FILTERING 
1. Remove any gene (transcript cluster) 

that is not expressed in both sample 
groups—to eliminate the scenario 
illustrated in the left column of Figure 8.

2. Remove any exon (probe set) that is not 
expressed in at least one sample group—
to eliminate the scenario illustrated in 
the most right column of Figure 8.

SECONDARY (SUGGESTED) FILTERING
1. Remove probe sets with high potential for 

cross-hybridization—to eliminate the 

scenario illustrated in the middle column 
of Figure 8.

2. Require a minimum gene signal level. 
3. Remove probe sets with very large 

exon/gene intensity ratio—which may 
also implicate cross-hybridization to 
other gene sequences.

4. Remove probe sets with very low 
exon/gene intensity ratio in the group 
that is expected to have the higher rate 
of inclusion—which may also implicate 
non-linearity of the probe set.

TERTIARY (OPTIONAL) FILTERING
1. Remove genes that have very large 

differential expression.
2. Limit search to high-confidence exons.
3. Restrict the search to only highly 

expressed genes.
4. Focus on exons that have gene-level 

normalized intensities near 1.0 in the 
group predicted to have a higher 
inclusion rate and near 0 in the group 
predicted to have a lower inclusion rate.

5. Filter probes with unusually low variance.
6. Limit search to known alternative 

splicing events.

PHASE IV: MIDAS

Subsequent to filtering, both gene-level and
exon-level signal intensities are input into
MiDAS. 

One option to carry out alternative splic-
ing analysis through MiDAS is detailed here:

n Gene signals—Core (filtered); the Core 
gene-level meta-probe set is chosen at 
the signal-estimation stage 

n Exon signals—all exons (filtered) 
n Meta-probe set—Full; at this point the 

meta-probe set tells MiDAS which set 
of exons to evaluate.
The combination described here means 
that MiDAS will look at all the exons 
(“Full”) associated with the input Core 
genes. A more conservative approach 
may be to look only at Core exons by 
inputting the Core meta-set probe file.

n cel_ids.txt—This file tells MiDAS how 
samples are partitioned into Groups 
(e.g., “brain,” “lung,” “kidney”) that 
should be compared for differential 
splicing. The ANOVA in MiDAS can 
compare multiple groups but does not 
incorporate additional factors like 
gender, tumor stage, etc.

MiDAS outputs predictions for alternative
splicing events as p-values. These should not
necessarily be treated as true p-values but rather
as scores that reflect relative ranking. The false
positive rate is likely to be much higher than

Group 1
Group 1
Gene Level
Splicing Index

Gene expressed in only one group Cross hybing probe set Non-responsive / absent probe set

Gene-level
Normalized Intensity

Splicing Index
Value

(Blue/Red)

Intensity

10

100

1000

<1

1

>1

-

0

+

10

100

1000

<1

1

>1

-

0

+

10

100

1000

<1

1

>1

-

0

+

Figure 8: Several scenarios that may lead to artifactual predictions of alternative splicing events. In each case, it is the combination of mis-

leading probe set results and differential gene expression that creates a false prediction of alternative splicing. 

For those using the command-line APT
programs on UNIX:
midas   -c  cel_ids.txt    -g  CC.genes-
core.i-plier.sum.txt    -e  CC.exons-
main.plier.sum.txt     -m  meta-probe-
set.full.txt 



indicated by p-values and the high-ranking
candidates should be further screened/filtered
and ultimately verified empirically. 

PHASE V: POST-MIDAS FILTERING

1. Keep only probe sets with p-values less 
than a particular cutoff (i.e., p-value 
< 1x10-3).

Probe sets with the smallest 
p-values are the most likely to have 
significant differences in inclusion rate. 
The cut-off value used can easily be 
lowered to increase stringency. The 
optimal cut-off value is really dependent 
on the number of targets you wish to see 
on your final list. In addition, you can 
do a multiple testing correction (such as 
Bonferroni or the Benjamini-Hochberg 
False Discovery Rate) to determine the 
p-value at which the differences are 
considered statistically significant. 

2. Sort results by magnitude (absolute 
value of Splicing Index) and keep only 
probe sets that have a minimum 
difference of 0.5.

Probe sets with larger magnitudes of pre-
dicted changes are more likely to have more
dramatic splicing changes. Small magnitude
changes may still be biologically relevant;
however, larger magnitude changes typically
make better candidates for validation. As dis-
cussed above, the cut-off value can easily be
raised to increase stringency of the filter
depending on the study design and needs. This
step is analogous to filtering by fold change for
gene expression. Whereas p-values measure
the ability to statistically separate two groups,
the SI gives the magnitude of the difference.
Unfortunately, MiDAS does not directly out-
put the SI and it must be calculated externally
to the program (e.g., with Perl or R).

PHASE VI: VISUAL FILTERING OF RESULTS

Despite all attempts to filter the data, sever-
al classes of false positives are not possible to
be identified purely based on values from the
statistical analysis itself. A simple manual
inspection of the data in genomic context can
catch many of these potential pitfalls.
Previous experience has shown the benefits of
doing this in two ways. 

First, BLAT the sequence of the PSR iden-
tified to be alternatively spliced (can be
obtained using the probe set ID on the
NetAffx Data Analysis Center at
www.affymetrix.com) to the UCSC Genome
Browser (http://genome.ucsc.edu). BLATing
the sequence can also provide information
about potential cross-hybridization or if the
probe set maps to multiple genomic locations. 

View the probe set in the browser and
zoom out slightly to get a broader view of the
region around the exon or the entire gene
that contains the exon of interest. The
genome browser can provide important
information about location of the probe set
within the gene and if the exon is known to
be alternatively spliced (based on EST and
mRNA sequences). It may also be possible to
observe overlapping, intervening or inde-
pendent transcripts (on the same or opposite
strand) and potential artifacts of transcript
cluster annotations, such as multiple genes
being combined into a single cluster.

While not an absolute requirement for
validation, candidates consistent with known
examples of alternative splicing are more
likely to prove to be true positives. However,
this filtering approach will also tend to sup-
press the discovery of novel splicing events.

Second, it is worthwhile to examine the
probe set intensity data of your exon of inter-
est and surrounding exons in an integrated
browser such as the Affymetrix Integrated
Genome Browser (IGB) or BLIS (Biotique
Systems). This is a helpful step to ensure that
the data is consistent with alternative splic-

ing. For example, if the exon of interest is pre-
dicted to be higher in group A (increased
inclusion), but surrounding probe sets also
appear higher, it may suggest that the region
of the gene has an alternative start or stop that
affects multiple exons. Also, if there are mul-
tiple probe sets for the exon, it is reassuring
that the data for all of them are in agreement.

Visualization and careful observation of the
data can often predict the likelihood of a pos-
itive result prior to verification. For example,
consider an experiment where we are compar-
ing tumor samples to normal samples to look
for aberrant splicing patterns in cancer. We
find an exon that is predicted by the Splicing
Index (or similar algorithm) to be higher
(increased inclusion) in the tumor samples.
However, when we locate the position of the
exon within the gene, we discover by looking
at the genome browser that the targeted exon
appears to be constitutive (always included)
in numerous EST and mRNA sequences.
This exon is very unlikely to be a simple case
of alternative splicing (cassette exon), and
thus is very unlikely to result in a positive val-
idation. It is entirely possible that this seem-
ingly constitutive exon is, in fact, alternative-
ly spliced in cancer. However, in this case, the
exon is predicted to be higher in the tumor
samples, but the exon is already included in
all of the transcripts of this gene. It is not pos-
sible to have an increase in inclusion when the
exon is already present in 100 percent of tran-
scripts. While the data may represent an
interesting biological event, it is possible that
the result is a false positive or may involve a
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Figure 9: A candidate splicing event mapped onto the UCSC Genome Browser. The high-

lighted region that corresponds to the targeted probe set (“YourSeq”) appears to be a cas-

sette exon (one that is included or skipped in different known transcripts).
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more complex regulation (possibly involving
alternative starts/stops) and as such may not
be easily verified by the follow-up RT-PCR
verification.

While the process of manual filtering can
be time-consuming, a well-trained eye can
view 100 or more potential hits in a reason-
able amount of time. Our experience suggests
that it is well worth the time and it can be
coupled with the design of primer sequences
for validation. Several commercially available
GeneChip®-compatible™ Software Packages,
including Partek’s Genomics Suite and
Biotique’s X-Ray, provide easy click-through
visualization of the raw signal data on an exon-
by-exon basis that belong to the same gene,
and can easily be used to conduct this step of
visual inspection.

PHASE VII: RT-PCR VALIDATION

Validations are easily carried out via RT-PCR
using primers in exons that flank the exon of
interest. This works well for simple cassette
exons and alternative 5’ and 3’ splice sites. As
illustrated in Figure 11, when the PCR prod-
ucts are run on an agarose gel, there will be
separation between the “include” product and
the “skip” product based on size (“include”
product is larger by the size of the alternative
exon and therefore runs slower through the
gel). Primers are best designed in flanking
constitutive exons and it is usually possible to
calculate the expected sizes of the PCR prod-
ucts ahead of time.

While carefully designed quantitative
PCR (i.e., TaqMan) could provide more accu-

rate estimates of the absolute levels of each
isoform, depending on the individual
requirements of the experiment, it may not
be necessary in the verification of results from
the exon array. In most cases the two different
bands representing two alternatively spliced
isoforms are produced by the same primer
pair, and it is easy to observe changes in the
relative intensity of the two bands between
samples. Amplification efficiencies may differ
between the two products, but this bias will
be the same for all samples. The key observa-
tion is a change in ratio (relative intensity) of
the two products. By starting with equal
amounts of input cDNA, simple RT-PCR can
be considered semi-quantitative.

Since each validation case is unique and
different types of alternative splicing events
require different strategies, for best results,
automated selection of primer sequences is
not recommended. For example, detection of
alternative starts and stops requires place-
ment of a primer within the exon of interest
since the target exon does not connect to
flanking exons on both sides. In this case, two
separate PCR reactions should be run. One
determines presence/absence of the exon (as
described above), and the other is a reference
primer pair designed to measure the alterna-
tive pattern or expression level of the gene.

A similar design strategy can be used for
mutually exclusive exons of similar size that
cannot be resolved by separation on a gel. In
addition, in order to discriminate inclusion
versus skipping events on a gel, the overall
size of the amplicon should be designed rel-
ative to the size of the target exon. Smaller
exons should have smaller overall amplicon
sizes so that the skip/include products will
clearly resolve (separate) on the gel. Clearly,
design of primers for validation is not a “one
size fits all” situation.

There are several classes of validation tar-
gets that pose additional challenges to RT-
PCR. Alternative starts/stops and mutually
exclusive exons were mentioned above.
Alternative transcriptional starts/stops that
include multiple exons are also tricky and
require validation strategies different from
the standard flanking exon approach. 

For cassette exons that are very large in
size, it may be difficult to efficiently amplify

Figure 10: A view of two mutually exclusive exons (19a and 19b) in the BLIS viewer

(Gardina, et al). This candidate splicing event was confirmed by RT-PCR. (BLIS normalizes

the exon signal for each sample to the median exon signal for that sample across all the

exons in the view.)
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Figure 11: Primer design for RT-PCR validation of alternative splicing events.



the “include” product using flanking exons
due to the large size of the amplicon. This
may also be the case for genes with multiple
consecutive cassette exons. 

Additionally, incorrect selection of con-
stitutive exons can lead to misinterpretation
of the RT-PCR results. Independent inter-
vening transcripts may be impossible to
validate using this method since the exon of
interest is never included in transcripts for
that gene. Some of these problematic cases
are illustrated in Figure 12.

Nevertheless, thoughtful and careful
primer design can usually find a solution for
validation. This also supports the need for
visualization of the data in genomic context.
Many of these problematic situations can be
avoided by looking at EST/mRNA sequence
data for evidence of these odd types of tran-
script structures. In many cases, if you didn’t
know the factors beforehand, RT-PCR may
result in a single band and you may incor-
rectly identify the exon as a false positive.

FILTERING METHODS

In this section, we will discuss some of the
inherently challenging cases associated
with this type of array-based alternative
splicing analysis, and propose a number of
primary and optional methods to increase
the true discovery rate. 

AN IDEAL SPLICING EVENT

Prior to describing the specifics of filtering,
it is helpful for us to conceptualize the ideal
scenario for gene and exon expression that
will maximize our ability to identify differ-
ential splicing. Factors that deviate from this
ideal situation tend to lower the probability
of correctly identifying splicing events
mathematically. Characteristics of the ideal
alternative splicing event include:

1. High gene expression (and consistent 
across all samples)

2. Equal gene expression in both sample 
groups

3. Most exons (probe sets) parallel the 
overall expression of the gene (in other 
words, most of the exons belonging to 
that gene are constitutive so that the 

estimation of the gene-level signal is 
more reliable)

4. A single exon is alternatively spliced
5. The alternatively spliced exon is always 

included in one sample group and never 
included in the other sample group.

Figure 13 shows an example of a correctly
identified alternative splicing event (later
validated by RT-PCR).
ANOMALOUS PROBE SIGNALS

In some cases, technical anomalies may

give a false signal for probe set intensity
due to cross-hybridization, probe set satu-
ration or inherently weak and non-linear
response. Although this is not a frequent
event, the exon array represents 1.4 million
probe sets, giving a larger number of
potential false positives. In most cases, this
signal will be about the same across all
samples in all groups. However, if the asso-
ciated gene-level signals are different
between the two groups, the false probe set
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Alternative 3’ ends

Internal alternative start

Independent transcript

Mutually exclusive exons

Multiple consecutive cassette exons

Very large cassette exon

Figure 12: Examples of challenging cases for RT-PCR validation where the primer pairs

(marked by flat arrows) may not give anticipated validation results due to the complication

of the biology. Therefore, careful selection of the primers and use of an alternative primer

design strategy should be considered if negative results are obtained.

Figure 13: Exon-level signals from a single gene with a validated differential splicing event.

The average signal and standard error for each probe set is shown for tumor samples (blue)

and normal samples (red). The log2 intensity scale is shown on the right-hand axis. In the

validated splicing event (indicated by the arrow), the exon shows low expression relative to

gene expression in normal tissues. Note that there are many characteristics of an ideal sce-

nario: the gene is highly and equally expressed in both groups, and most of the exons

behave uniformly. (The data here is visualized with the Partek Genomics Suite.) 
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signal will be interpreted as differential
inclusion of the exon because the probe set
signals are normalized against the gene sig-
nals from each group.

1. Cross-hybridizing or constitutively high
probe signals. In this scenario, an individ-

ual probe set signal may be stuck on “high”
regardless of the actual expression of that
exon. Therefore, this exon will appear to be
relatively more included in the sample
group that has lower expression for the
cognate gene. A probable example of this

phenomenon is shown in Figure 14.
2. Poorly hybridizing or non-linear probes.
This is the converse of the above problem,
but the probe sets will appear to be weakly
expressed in all samples (see Figure 15). 
Characteristics of these anomalous probe 

set signals are:
1. Approximately equal intensity in both 

sample groups
2. Low variance
3. Possibly extreme intensities relative to 

gene expression level.
Implementation of a systematic filtering

method will be possible as more data
becomes available. Fortunately, such anom-
alous signals are also generally easy to identi-
fy by visual inspection. 

PRIMARY (MANDATORY) FILTERING
OF SPLICING INDEX RESULTS
There are two major criteria that must be
met for genes and probe sets to be included
in further downstream analysis after
microarrays. Both relate to a common
theme, where the lack of expression will
very often be mistaken for alternative splic-
ing when compared to actual expression (or
even low expression) in another group, since
the signals are so low that the arrays are
simply measuring the noise of the experi-
ments. Thus, the first two mandatory filter-
ing steps of all splicing analyses should be:

1. Remove exons (probe sets) that are
not expressed in at least one group.
(The reason for only requiring detection
in one group is that if the exon is alter-
natively spliced it is completely reason-
able that it is absent in all of the samples
of one group.)

The following is a good default set 
of rules as starting points to remove exons
that are expressed at low level:

1. If the DABG p-value of the probe 
set is less than 0.05, the exon is con
sidered as “Present” in a sample.

2. If the exon is called as Present in
more than 50 percent samples of a 
group, the exon is considered to be 
expressed in that group.

3. If the exon is expressed in either 
group, accept it; otherwise, filter 

Figure 14: A probable artifact from probe sets with constitutively high signals (indicated by

the arrow). Even though this probe set gives the same signal for both tissue types, it

appears to have a relatively high inclusion in normal samples because the gene-level signal

is lower in normal than in tumor. This probe set displays three trademark symptoms of this

artifact: it is higher than the neighboring probe set signals, it is approximately the same in

both tissues and it shows an extremely low variance across the replicates.  

Figure 15: A probable artifact due to non-responsive or non-linear probes. The indicated

probe set appears to be alternatively spliced since its signal in tumor is relatively low com-

pared to gene expression in tumor. Consequently, the exon appears to be 100 percent

included in normal but only about 15 percent in tumor (the scale is log2). This probe set dis-

plays two trademark symptoms of this artifact: it has the same intensity in both tissues, and

it shows low variance across replicate samples.



it out.
In a recent study of colon cancer 

splicing, this step removed almost two-
thirds of the exons (540,000 remained 
out of 1.4 million probe sets). More 
stringent filtering options may be 
implemented to require that the exon is 
called as Present in more than 75 
percent of the samples or have a DABG 
p-value of less than 0.01.

2. Remove genes (transcript clusters)
that are not expressed in both groups. 
(Alternative splicing is meaningless
unless the gene is expressed in both
sample groups.)

This is more complicated, because we
don’t presently have a direct way of mak-
ing Present/Absent call at the gene level.
Instead, an approach utilizes the exon-
level DABG results to indirectly esti-
mate Present/Absent for the gene. In this
case, we use the Core exons as a surrogate
for gene expression (but this is only valid
for Core genes).

The following is a good default set of
rules to remove genes expressed at low level:

1. If the DABG p-value of the probe 
set is less than 0.05, the exon is 
considered as Present in a gene.

2. If more than 50 percent of the Core 
exons are called as Present, the 
gene is considered Present.

3. If the gene is called as Present in more 
than 50 percent of the samples in a 
group, the gene is considered 
expressed in that group.

4. If the gene is expressed in both
groups, accept it; otherwise, filter 
it out.

This filtering step is easily made more
stringent by increasing the percentage of
samples (e.g., more than 75 percent) in
which the gene is expressed, and/or by low-
ering the cut-off DABG p-value for detec-
tion. Assuming that the gene is in fact
alternatively spliced, you may not want to
increase the “50 percent of Core probe sets”
requirement since it is likely that some of
the exons will be skipped.

In a recent study of colon cancer splicing,
this step removed almost half of the Core

genes (9,000 remained out of 17,800 Core
transcript clusters). If Full gene sets are
used for analysis, it is anticipated that a
much larger proportion of the speculative
content will be removed.

SECONDARY (SUGGESTED) FILTERING
1. Discard probe sets with high poten-
tial for cross-hybridization.

Probe sets that have the potential for cross-
hybridization are more likely to result in false
positives. This is because the signal from the
probe set may originate from an entirely dif-
ferent gene that may have tissue-specific
expression. On the exon array, each probe set
has a value of potential to cross-hybridize in
the annotation files. Probe sets with cross-
hybridization values other than 1 might be
candidates for removal from the analysis.
2. Require a minimum gene expression
intensity of greater than 15.

Results from genes with low expression
values close to the noise level may not be as
reliable. Genes with higher expression val-
ues tend to have less noise. The actual opti-
mal cut-off value is likely to be dependent
on the experiment (and how the gene-level
values are calculated). This value can be
increased if higher stringency is desired.

In general, one can estimate the back-
ground gene signal and set an absolute
threshold for calling the gene Present. In
this case:

1. If the gene signal is greater than 
THRESHOLD, the gene is called 
as Present.

2. If the gene is called as Present in 
more than 50 percent of the 
samples in a group, the gene is 
expressed in that group.

3. If the gene is expressed in both
groups, accept it; otherwise, filter 
it out.

3. Discard probe sets with very
large gene-level normalized inten-
sities (exon/gene > 5.0).

This filter relates to probes with poten-
tial cross-hybridization, but also includes
probes with high background levels. The
theory behind this filter is that exons hav-
ing intensities much higher than the

median intensity across the gene are likely
to have a signal that originates from some-
where outside of the gene. While there
should be some consideration for probes
with varying affinities (probe response),
intensities that are dramatically different
from the rest of the exons belonging to the
same gene are certainly questionable. Even
given the potential variability in probe
response, accepting a value much beyond 5.0
(e.g., the exon is five times higher than the
gene intensity in an absolute comparison sense)
is not recommended. Large values for the gene-
level normalized intensities can also result in
somewhat inflated magnitudes of change.
4. Discard probe sets with very low
gene-level normalized intensities in the
group that is predicted to have the high-
er rate of inclusion (exon/gene < 0.20).

The theory behind this filtering step is
somewhat related to the argument above,
that exon intensities that are much different
from the median intensity are unusual.
However, it is a bit more complicated on the
low end. It is entirely feasible that an exon
could be included in only, say, 10 percent of
transcripts in group A, but in only 1 percent
of transcripts in group B. This difference
still represents a 10-fold higher inclusion
rate in group A, and the exon could still be
considered enriched in group A. However, if
our interest is in reducing the false positive
rate and finding suitable validation targets,
this class is better off being filtered out. In
most of these cases it is more likely that the
exon is simply not expressed at all.

TERTIARY (OPTIONAL) FILTERING
1. Remove genes that have very large
expression differences between the
two groups.

Despite the fact that the Splicing Index
algorithm corrects for gene expression level,
genes with very large differentials in gene
expression between the two groups have a
tendency to produce false positives. Large
disparities in transcription rate make it
more likely that probe set intensities in
the two groups are disproportionately
affected by background noise or satura-
tion. A 10-fold difference is an arbitrary
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cut-off that can be decreased if a less
stringent filtering is desired:

|log2 (gene / gene)| > 3.32
At the extreme, we might begin by look-
ing only at genes with approximately
equal expression.
2. Limit search to “Ensembl/RefSeq
Supported” or “Core” Exons.

Narrowing the set of analyzed exons to
only well-annotated exons (“Core” exons)
is a way of dramatically reducing the
amount of speculative content. Because
speculative exons have much lower levels
of annotation/sequence support, they are
more likely to result in false positives. The
trade-off with this filter is that you will
lose the ability to discover new splicing
events involving novel exons. It is possi-
ble, however, to uncover new examples of
alternative splicing that involve well-
annotated exons (novel skipping of a
known exon, for example.)
3. Increase stringency on gene expres-
sion level filter to restrict the search
to only highly expressed genes.

Genes with higher expression levels
have exon intensities that are further
away from noise and thus are more reli-
able. A reasonable, but very conservative,
threshold would be greater than 100.
This filter can be used to find the lowest
of the “low-hanging fruit,” but at the
expense of potentially interesting alter-
native splicing events in low or moder-
ately expressed genes.
4. Focus on exons that have gene-level
normalized intensities near 1.0 in the
group predicted to have a higher inclu-
sion rate and gene-level normalized
intensities close to 0 in the group pre-
dicted to have a lower inclusion rate.

This filter is a bit theoretical, but does
have some basis in fact. For the sake of
simplicity in this example, let’s assume
that all probes have equivalent affinities
(probe response). Let’s also assume that
you are looking for a dramatic change in
splicing pattern such that an exon is
fully included in all transcripts in one
group and fully skipped in all transcripts
in the other group. In this perfect case,

the exon would be expected to have a
gene-level normalized intensity of 1.0
(exon intensity equivalent to gene
expression level) in group A, and a gene-
level normalized intensity of 0 (exon not
expressed) in group B. 

Real data is, of course, not this ideal-
ized. However, there is some empirical
support for this theory. Figure 16 shows
a histogram of gene-level normalized
intensities for validated brain-enriched
exons in both the brain samples (red) and
non-brain samples (green). The peak for
the brain samples (exon included) is
between 0.8 and 1.0, and the peak for
the non-brain samples (exon skipped) is
between 0.2 and 0.4.
5. Filter probes with unusually low
variance.

This filter seems a bit counterintu-
itive at first, but the idea is that
probes with very low variance (relative
to others within the gene) across the
samples are very likely to be either
absent in all samples (not expressed) or
saturated in all samples. If the signal
is above background it can escape the
DABG filter even though the exon is
“Absent.” By definition, an alterna-

tively spliced exon will have probe set
intensities that change between sam-
ples (Present in one sample, Absent in
another). This will also tend to elimi-
nate probes that are cross-hybridizing
or non-responsive.
6. Limit search to known alternative
splicing events.

One way of quickly screening for candi-
dates that are most likely to result in pos-
itive validations is to limit the analysis set
to exons that have prior evidence of being
involved in an alternative splicing event.
This filter is more difficult to implement
since it relies on bioinformatic predictions
of alternative splicing based on
EST/mRNA sequences or annotations.
The UCSC Genome Browser is one good
source of transcript and alternative splic-
ing predictions. In addition, there are a
number of publicly accessible databases of
alternative splicing events available on the
Internet. It may be possible for this pre-
diction to be run once to create a list of
probe sets that could be used to filter all
subsequent analyses. It should be pointed
out that most exon-exon junction arrays
are filtered in this way by default since
they are typically designed to observe
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junctions. Thus, it might be expected
that they would have higher validation
rates on the whole compared to an exon
array design. Using this filter does, how-
ever, surrender the ability to discover new
alternative splicing events.

OVERALL STRATEGIES

It is important to remember that after the
CEL files are produced, the most laborious
step in the analysis is validation in the labo-
ratory, e.g., by RT-PCR. Therefore, it may
be wise to begin with an extremely conser-
vative analysis that minimizes false positives
(i.e., using all or most of the recommended
filtering steps), then relax the search for can-
didate splicing events until the false positive
rate becomes unacceptable. 

This strategy may be modified depend-
ing on time constraints since it postulates
iterative cycles of analysis/validation. The
final success rate will likely be heavily
dependent on sample quality, sample size
and the inherent biological differences
between the sample groups. 

As an example, a study comprising a
panel of relatively pure normal tissue sam-
ples produced a validation rate of 85 per-
cent, while a much noisier comparison of
colon tumor versus normal tissue demon-
strated a validation rate of 35 percent.
Researchers might also have particular
interests that guide their strategies, e.g.,
searching for targets of a particular splicing
factor or alternative splicing events in a
particular pathway.

SPLICING EVENTS THAT MAY
BE MISSED BY THE ANALYSIS

Here is a partial list of situations where
a real splicing event may be missed (false
negative) by current splicing algorithms
along with brief discussions of each:

nn Alternative splicing outside of
transcript clusters

The MiDAS uses transcript cluster
information to generate the gene-level
call, thus any probe set outside of a
transcript cluster is excluded from the

analysis. Depending on how you
define “transcript cluster,” the exclud-
ed probe sets represent a significant
portion of the total number of probe
sets on the exon array.
nn No probe set for the alternatively
spliced exon

There are several reasons why an
exon may not be represented by a
probe set on the exon array. Some of
the reasons for lack of probe set include
very small exons (less than 25 bp),
over-fragmented exons resulting in
multiple PSRs that are all below the
minimum size and lack of evidence (or
prediction) for existence of the exon. It
is also possible that the sequence of the
exon made it impossible to build
probes, the designed probes give very
weak signal or the sequence of the exon
is repeated elsewhere in the genome
such that data from the probes for that
exon were discarded or filtered out.
nn Alternatively spliced product is
rapidly degraded

It is possible that mRNA, including
an alternatively spliced exon, is turned
over at a high rate so that the signal is
not detectable by the array. In many
cases, inclusion of an exon (or mis-
splicing) alters the protein coding
reading frame or incorporates a prema-
ture termination codon (PTC). Cells
have a mechanism called Nonsense
Mediated Decay (NMD) for detecting
and destroying these messages. It has
also been shown that in some cases
this mechanism is exploited as a
means of regulating gene expression:
purposeful inclusion of a PTC so that
the mRNAs are degraded by NMD to
silence expression of the gene.
nn Only a fraction of annotated
exons from a gene are expressed

Many genes have alternative tran-
scriptional starts or alternative 3’ ends.
In some cases, these alternative starts
and stops may result in only a fraction
of the well-annotated exons in a tran-
script cluster being expressed. Our fil-
tering approaches require that more

than 50 percent of the well-annotated
exons within a transcript cluster be
detected above background for the
gene to be considered as expressed.
Thus, if expression involves fewer than
half of the exons, the algorithm will
incorrectly call the gene as absent.

SUMMARY

Exon arrays are powerful tools that enable
researchers to monitor genome-wide gene
expression and alternative splicing beyond
classical microarrays. By following the basic
guidelines in this Technical Note, novel
splicing events may be uncovered that are
critical to biology and disease studies, adding
a new dimension to genome research. 

FAQs

1. Why should DABG not be used for
gene-level Present/Absent calls?

There is a strong assumption in DABG
that all the probes are measuring the same
thing (i.e., the same transcript). This is not
the case at the gene level due to alternative
splicing. For example, probes for a cassette
exon that is skipped will contribute to a mis-
leadingly insignificant p-value.

2. Can we determine frameshifts or
the introduction of nonsense codons by
alternative splicing events?

No. The resolution of the Human Exon
1.0 ST Array is not nearly sufficient to deter-
mine single nucleotide changes. This would
require junction-type arrays, which focus on
specific events that are known a priori. The
Human Exon 1.0 ST Array is designed more
for genome-wide discovery of large-scale
alterations in transcript structure. 

3. What validation rate should be
expected from the analysis?

A validation rate of 80 percent would be
excellent, but rates down to 30 percent might
be acceptable in discovery-based research.
Generally, the predicted splicing events that
consistently survive different types of filter-
ing are more likely to be true positives. The
acceptable validation rate will be a balance
between the researcher’s available time and
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resources to the validation versus the desire to
extend the limits of the search. As a first dis-
covery tool, exon arrays will generate infor-
mation not previously possible with other tra-
ditional technologies. In some cases, the dis-
covery of even 10 new splicing events in an
exon study might be highly significant. As
more data sets become available on exon
arrays, it is anticipated that further algorithm
development will become more sophisticated
and the validation rate will improve.

4. Can MiDAS handle multiple sam-
ple groups?

The ANOVA in MiDAS can compare
multiple groups, e.g., brain, kidney and
heart. It does not handle additional factors
like gender, tumor stage, etc. More sophis-
ticated ANOVA methods have been imple-
mented in third-party packages.

REFERENCES

Technical Note, GeneChip® Exon Array Design
White Paper: Guide to Probe Logarithmic Intensity Error
(PLIER) Estimation
White Paper: Exon Probe Set Annotations and Transcript
Cluster Groupings v1.0
White Paper: Gene-Signal Estimates from Exon Arrays
White Paper: Alternative Transcript Analysis Methods for 
Exon Arrays
Technical Note, Statistical Algorithms Reference Guide
Gardina, P. J., et al. Alternative splicing and differential
gene expression in colon cancer detected by a whole
genome exon array. BMC Genomics 7:325 (2006).
Srinivasan K., et al. Detection and measurement of
alternative splicing using splicing-sensitive microarrays.
Methods 37(4):345-59 (2005).

A complete listing of GeneChip®-compatible™ software
products for exon applications can be found at
http://www.affymetrix.com/products/software/compatible/
exon_expression.affx. 
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